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Statistics and scaling behavior of chaotic domains in a liquid crystal light valve
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An optical system containing a liquid crystal light valve and a two-dimensional feedback is known to form
a wide variety of ordered and disordered spatial strucfukkbmanovet al, J. Opt. Soc. Am. B, 78(1992)].
Here we describe a spatiotemporal feature—chaotic domains, obtained under temporal modulation of the input
beam. We characterize these structures using a geometrical and a statistical approach. We find that the system
retains low-dimensional dynamics locally while exhibiting spatiotemporal chaos. A power scaling relation
between the size of the chaotic domains and the spatial coupling length of the system is also obtained from the
experimental measurements. Good overall agreement is found between experimental results and the numerical
integration of model equationgS1063-651X99)12803-4

PACS numbd(s): 42.65.Sf, 42.79.Kr, 47.54.r, 05.45-a

[. INTRODUCTION also determine scaling laws in the time-averaged average
. . . . . size of the bright domains.
Since the pioneering experimental and the_orencal works The paper is organized as follows: The experimental setup
by Akhmanovet al. in the late 1980§1-4] which are re- s yresented in Sec. II. The model equation obtained by de-
viewed in Ref.[5], the liquid crystal light valve(LCLV)  g¢ribing the propagation through all the optical elements of
optical system with two-dimensional feedback loop has esihe experiment is discussed in Sec. Ill, together with the
tablished itself as a prototype experiment in the field of patongitions to obtain temporal chaos. We also present numeri-
tern formation and instabilities in nonlinear opt[€s-8]. Itis  cal simulations of the full spatiotemporal chaos regime lead-
a simple optical system with a high degree of flexibility anding to the formation of the chaotic domains. Section IV pre-
controllability, and is capable of generating a wide range ofsents the analysis of the experimentally observed
spatial and spatiotemporal distributions of light intensity.  spatiotemporal chaos, and presents evidence of a power scal-
In this paper we investigate the spatiotemporal dynamicéng relation between the size of the chaotic domains and the
of an optical system containing a LCLV with 180 ° rotated spatial coupling length of the system. Conclusions and ac-
feedback and modulated input. Minimizing the effect of dif- knowledgements are contained in Sec. V.
fraction in the experiment by imaging the “read” side of the
LCLV onto its “write” side, we consider diffusion and the Il. EXPERIMENTAL SETUP
rotation of the feedback as the main mechanisms for the ) ) o
spatial coupling. The rotation of the feedback by 180° and The setup for the experiment is shown in Fig. 1. The
the modulation of the input field induce chaotic dynamics.feéedback fiber bundle is rotated by 180°, so that the feed-
Because of diffusion and the transverse bounddges ex- Pack loop closes upon itself after two round trips of the sys-
perimental inhomogeneitigschaotic domains of in-phase tem. The input light intensity is m_odulate_d by a M|ch_aelson
dynamics are formed in different locations of the transversén.terferomfater arrangemeffioxed in the _dlagram qf Fig.)1
space. with the mirror (M ,ing Mounted on a piezoelectric crystal.

Without the modulation, the system is stationary for theAn ac sinusoidal voltage is applied across the piezoelectric

. . . . ... .~crystal to control the movement of the mirror. Since the
given parameter settings. As t_he input beam mte_nsny 'S Ninovement is only a fraction of a wavelength, there is no loss
creased, other complex spatiotemporal dynamics can b iomnoral coherence. This also ensures that the intensity of
found even without the temporal modulation of the input.

, the output changes linearly with the displacement of the
However, to the best of our knowledge the formation of yy6ying mirror. The input light intensity is continuously

bright chaotic domains is a particular feature not previouslymgnitored, and a sample of the output signal of the monitor-
described within the rich phenomenology of this system. jng photodetector is shown in Fig. 1. To influence the
We characterize the behavior of the system with a varietytrength of transverse spatial coupling in the system, pin-
of techniques. Using Lyapunov exponents we show that th@oles of varying sizes are used at positi®@ to spatially
local dynamics in the domain is chaotic, and that the dynamfilter the feedback beam. Photodiode detectors are used to
ics of the intensity of the entire pattern has a positivemonitor the temporal evolution of both the dynamics of a
Lyapunov exponent which is lower than the exponents of thdocal spot in the transverse plane and the intensity of the
domains. Using statistical and geometrical techniques wentire output beam. The overall spatiotemporal behavior of
the system is instead observed by means of a conventional
video recorder. The images are then digitized and analyzed
*Electronic address: eric@reynolds.ph.man.ac.uk using a computer.
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y \1 Maovg [ 51 x and y are the strength of nonlinearity and the feedback
N ; coefficient respectivelys is the phase shift of the read beam
P52 imwor vemr introduced by the LCLV 7 is the relaxation time constarid,

'
'
Lecacscsccncnanaas

is the effective diffusion coefficient,’ is r after coordinate
transform through the feedback loop, a#gl is the constant

phase shiftu is the nonlinear coefficient of the LCL\B is
“ — the total loss of the system, ahg is the input light intensity.
ﬁ I Y1 and ¢, are the angles between the liquid crystal director

LCLV Variable iris

L1 and the polarizer orientation and between the liquid crystal
(F=250mm) director and the direction of polarization of the input beam,
3l fl respectively.
' T f Notice that a modulation term has been included in this
. equation.f ande are the frequency and depth of the modu-
FIBER BUNDLE —_— lation applied to the input beam, respectively.appears in

the expression fok. Thus if I, is of finite sizex will take
on the same spatial profile as the pump beam. In our numeri-
POLARIZER\D

: N cal simulations we use a pump beam with a top-hat shape
%ﬂm (=125mm) with homogeneous intensity on the flat top. To model the

i
'
'
i

feedback filtering pinhole numerically, the Fourier transform

i of the field is multiplied by a top-hat function. This is
FEEDBACK T equivalent to a convolution in real spad]. In the experi-
OUTPUT ment diffraction is minimized by imaging the read side of the
(SCREEN / DETECTOR) LCLV onto its write side; hence its effect is neglected in the
FIG. 1. Setup of the LCLV experiment. mOd?'- . .
up xpen Without diffusion, Eq.(1) can be reduced to a set of two
Ill. SPATIOTEMPORAL CHAOS AND CHAOTIC coupled nonlinear differential equatiof:
DOMAINS IN THE MODEL EQUATION de,
Equations treating the LCLV as a nonlinear element in- dt T h1=[1~-e codft)]u 1+ y cod doF o),
side an optical cavity have been derived in the paktThey )
successfully model and predict the behavior of an optical do,

system similar to ours. There are, however, important factors 7 g; + %2~ [1—ecogft)]«[1+ycogdi+ o],

that need to be taken into consideration. In our experiment

the field transmitted by the fiber bundle is completely ab-where¢, and ¢, are the phase shifts at pairs of poirtand
sorbed by the photoconductor layer. Moreover, the liquidx’, connected through the 180° rotation of the feedback
crystal refractive index, which modulates the input lightjoop [11]. Equations(2) govern the temporal behavior of
beam, is affected by the charge carrier density of the photoeach half of the transverse field. The temporal behavior of
conductor and not by the field directly. Therefore, we haverhis system, in the absence of modulation of the input light
rederived the model equation by considering our experimen¢e =0), is depicted by the phase diagram shown in Fig. 2.

tal setup as a system with optical feedback. Although therhe symmetry of the diagram corresponds to the symmetry
final form of our model equation is similar to earlier models, of the set of equations.

our approach enables us to write the feedback coefficient and The location, number, and stability of the fixed points in
the strength of the nonlinearity in terms of experimentallyFig. 2 depend on the system parameters. One generic feature,
measurable angles between the liquid crystal director, thRowever, is that the relaxations to the stable off-diagonal
polarizer orientation, and the direction of polarization of theg, o q points @1 52) present damped oscillations, in agree-

input beam. . . . . ment with the scaled eigenvalues of the linear stability
The model equation for our optical two-dimensional feed-

back system containing a LCLV is as follows:

A=~ 1% ky\sin( s+ do)sin(bot do)]. (3

In particular, for the parameter values of Fig. 2, the relax-
ation  oscillations have scaled frequencies  of
R 3.44/(2wr7), 5.42/(2w7), and 5.05/(2r7) for the stable
X[1+ycodo(r',t)+¢o)], (1) fixed pointsE, F, andG, respectively. As the modulation of
the input beam is introduced & 0) at a frequency close to
where that of the damped oscillation, and its depth increased, a

ad(r,t)
ot

T +¢(r,t)=D2V2e(r,t)+ k[1—& cog ft)]
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fusive system—numerical simulation«x=7.5, y=0.82, ¢,
or ] =2.338, £=0.5, andf =0.526f, and the frame interval is 0.85
ol b e b v b b e e s
0 2 4 6 8 10 12 ) » i
o, (rad.) are clearly identifiable in each of the two cases. The power

) spectra also show similar distributions of power in the fre-
FIG. 2. Phase space diagram of the system:7.0, y=0.82,  quency domain. There are, however, some differences be-
$0=0.338, ande=0.0. PointsA, B, C, andD are saddle points yyeen the two cases which become more pronounced as
along the diagonal. Away from the diagonal, there are symmetriGncraases. One of these differences is that the trajectories
pairs of stable fixed points corresponding to positigh$, andG, going around the higher suborbit are less spread out when
while pointH and its symmetric counterpart are saddle points. it \qjon is included. Another difference, less obvious from
) ) ) ) the diagram, is that when diffusion is present the orbit spends
complex chaotic attractor is formed in the region of phasgygre time in the lower of the two suborbits. Whén is
space around the stable fixed poiisF, andG. Therefore, g ficiently large, the dynamics will no longer be chaotic due
with suitable modulation of the input light intensity, chaotic strong coupling to the boundaries of the beam where there

dynamics can be induced in the bulk of the system. is no oscillation at all. We avoid this “large” diffusion limit
Having found chaotic dynamics in the coupled o.d.e.’s;y o r experiment.

[Eq. (2)], we extend our investigation to take spatial effects e |argest positive Lyapunov exponents, calculated from
into account. By numerically integrating the original p.d.e.ime series of each of the two cases. are
model equatiofEqg. (1)] and monitoring pairs of transverse

locations connected by the 180° rotation of the feedback Nmax=0.21=0.02  (without diffusion),

loop, we can compare the dynamical behavior of the p.d.e.

and the coupled o.d.e. systefiég. 3). In both cases we find A= 0.22+0.02  (with diffusion)
max . . .

that the strange attractors occupy the same region of space

and have similar shape. The two distinct parts of the attractof oqe values are in good agreement with each other, and also

with the value of the largest Lyapunov exponent of the sys-
tem, calculated from the o.d.e’s, of 02D.01. For the pur-
pose of these calculations the relaxation time of the LCLV is
taken as unity.

Therefore, in the presence of diffusion, chaos induced in
the bulk of the system is preserved. We note that the numeri-
cal results for the temporal characteristics of the diffusive
case are independent of the transverse position so long as it
is away from the boundaries of the pattern segment.

In the transverse plane of the system the beam is sepa-

Attractor (Without Diffusion) Attractor (With Diffusion)

5 6 7 8 9 10 5 6 9 10

¢ (rad.) q7> (radg rated into two halves of unequal brightness, and within each
Power Spectrum (Without Diffusion)  Power Spectrum (With Diffusion) of these halves there are bright spots. Figure 4 shows a se-
sool ‘ T soob | T quence of snapshotsl?] of the transverse beam profile
showing the evolution of the complex spatiotemporal struc-
4000 F q 4000 F

tures. Bright areas are shown to emerge from the darker sur-
rounding background area, evolve in shape and size, and,
then, collapsing onto themselves, disappear. New bright ar-
eas will then emerge elsewhere, and the sequence continues.
We call the bright areas bright domains and the darker areas
0 - 0 dark domains. These two types of domains occupy a com-
00 08 00 s 2O 00 08 IO 5 20 mon area away from the bou_ndanes. We call th|§ area the
“active region.” Because bright domains are distinctive
FIG. 3. Comparison of temporal dynamical behavior with andWhile dark domains are difficult to separate from the inactive
without diffusion. For the diffusive casd)=0.03. Frequency is areas, unless otherwise stated “chaotic domains” shall be
normalized to the relaxation time of the LCLV. used to refer to the bright domains. Rotational symmetry of

3000F 3000F

Power
Power

2000 i 2000F

1000 q 1000
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FIG. 5. Sequence of frames of the transverse intensity profile of 50l
the LCLV optical system—experimen®5 frames per second
Panel(a) shows the whole cross section of the beam while subse- 0
quent panels are enlarged portions showing the “active” region. 0 N 4 6 3 10 12
The modulation frequency used here is 5 Hz. frequency (Hz)

the system is always preserved as these domains always FIG. 6. Power spectrum of the experimental time series.
evolve in pairs, one on either half of the beam. This is the

case with all other spatial features. The average size an@ relatively small area at the center of each half of the beam
number of the bright domains is affected by the amount ofsee panela of Fig. 5]. The shapes of the domains also
diffusion in the system. The greater the diffusion the larger@Ppear to be more regular in the experiment as compared to
the size, and the smaller the number, of the domains. Therébe numerical results. As a consequence, although the sizes
fore, the whole system behaves as a spatially extended arr&) the domains evolve in time, their shape does not appear to
of interconnected subsystems evolving around the chaotighange significantly during their “lifetime.” There also
attractor where the subsystem size is affected by the amoufigeém to be preferential sites where chaotic domains are

of diffusion. formed in the experiment, whereas in the numerical simula-

tion domains are formed at random locations. This is prob-

IV. EXPERIMENTAL OBSERVATION OF CHAOTIC ably due to spatial inhomogeneities in the experiment which
DOMAINS AND STATISTICAL ANALYSIS are not included in the model equations.

In the temporal domain, the method of delay coordinate

embedding 14] was applied to the experimentally obtained

Based on the experimental observations, the dIfTus'vetime series of intensity measurement from a small area de-
model discussed in Sec. Il appears to correctly predict th?ector placed within the active region of the beam. We

spatiqtemporal behavior of our feedback system. When Fh hoose an embedding dimension of three since, from the
experimental control parameters are set at the appropriaté '

values suggested by the numerical simulation results, bri Qumerical studies, we expect a three-dimensional space to be
> Sugg y S ghsufficient to unfold the attractor of interest to us. We also use
domains are observgd3]. Note that the response time of

the LCLV ranges from some tens to hundreds of millisec—the technique of singular value decomposition redudids

onds depending on the controlling electronic signal. There'-[0 reduce the effects of noise, as we expect the dynamlcs of
fore chaos is induced by using frequencies from 2 to 50 H the system to be_ low dimensional. Plotting the tlme-de_lay
for the modulation of the input light beam, in agreement with oordinates on this recons?ruct_ed phase. space, we obtain the

. o Ny .—unfolded attractor shown in Fig. 7. Using the same tech-
the relaxation oscillations observed with no modulation

Chaotic-tvoe spatiotemporal dvnamics and the formation 0’pique, the numerically obtained time series of the diffusive
tic-lype sp P y . ; case is also embedded. In the numerical case the time series
chaotic domains can also be observed, in the experiment

a . . L . .
well as numerics, with higheffrom 2—4 time modulation € taken from monitoringp within the active region. The dc

frequencies although these dynamical regimes will not bé)art of each time series is removed since we are only inter-

A . ested in the dynamics.
dealt with in this paper. Figure 5 shows a sequence of snap- .. . : .
LS N Since the two orbits are reconstructed from time series of
shots of the enlarged “active region” of the beam. Each of
these domains emerges from the darker surrounding back-
ground, oscillates, and changes its size, then contracts an
dissolves away by collapsing into the center. This behavior is
similar to the results of the numerical study. In the temporal
domain, a chaotic-type behavior is observed, similar to that
of the numerical simulations. The power spectrum of the
time series is presented in Fig. 6. A broadband characteristic
with substantial power in the low frequency components can
be observed.

There are, however, some noticeable differences between
the experimental observation and the numerical results. In FIG. 7. Phase space portraits reconstructed using a delay em-
the experiment, the bands of inactive region occupy a muchedding of time series data from the experiméaft hand panél
broader area, so much so that the active region is confined tind numerical simulation of Eq1) (right hand panel

S
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100 E FIG. 9. Largest Lyapunov exponents of loddiamond$ and
50 ] global (triangles intensity (experimental result
0 A A
5 10 15 tributed among other frequencies. Although the global be-
frequency(Hz) havior is clearly dominated by the modulation of the input

beam(the dominant frequency in the power spectrum corre-
sponding to the driving frequency of the input beairthe
largest Lyapunov exponents are small but still positive, indi-

. . cating chaotic oscillation.
guantities which are closely related but not the same, they Fogr the calculation of the largest Lyapunov exponent, the

FIG. 8. Comparison of local and global power spece=peri-
mental resujt The size of the pinhole used in filtering is 0.3 mm.

e varying strength of the spatial coupling of the system. It
found that the dynamics at the local level is consistently
ore chaotic than its global counterpart throughout the range
Pf pinhole size(Fig. 9).

The largest Lyapunov exponents of the local variable are
und to increase as the diameter of the feedback pinhole is
creased, suggesting that with weakening spatial coupling
e subsystems become less synchronized with one another.
s a result they can oscillate more independently of each
ther, becoming more chaotic in the process. This relation
between the chaoticity and the spatial coupling is also found
for the global dynamics.

A. Temporal characterization of the chaotic domains These observations are supported by the numerical re-

In order to gain further knowledge of the relationship be_sults. The variation of the principal Lyapunov exponent with

tween the subsystems within the transverse cross section, vﬁ)%}nhole _slzeh(lnversellz)_/ plrgpcl)rtlcr:nal .t?] Ispgltlal coupling
compare the dynamical behavior of the global system it rength is shown in Fig. 10. In the pinhole diameter range
that of the local system, and examine the differences between . . . . . .
different types of local areas. Bgcal we refer to a location 3 X + +
within the active region of the transverse cross section of the C + %
system with an area much smaller than the typical size of the
geometrical structures preser@lobal, on the other hand,
means the total area of the transverse cross section. We char-
acterize the differences in local and global behaviors by
means of the power spectrum and the princidargesj
Lyapunov exponent.

The experimental results for these are given in Figs. 8 and
9. Figure 8 compares the power spectra of the experimental
time series representing the two cases. A feedback filtering i
pinhole of 300um diameter is used. The power spectrum ook Experimental rangq
for the local behavior is broadband, with substantial power in ) ' ' ' ' '
the lower frequency region, clearly indicating that the behav-
ior is chaotic. The power spectrum for the global behavior,
however, indicates a mainly periodic oscillation with a num-  FIG. 10. Largest Lyapunov exponents of the lotdiamond$
ber of isolated peaks. Only a small amount of power is dis-and global(triangles systems(numerical simulation

a coiled up spring, roughly separated into two interconnecte
parts. Although the experimental trajectories are not smootf}h
reflecting the limited sampling rate, and the flow of the tra-
jectories is less well defined, reflecting the effect of residual
noise, the two attractors are topologically similar objects. ItfO
is thus reasonable to conclude that the two reconstructed aﬁi
tractors originate from similar, if not the same, underlyingth
dynamical systems. This is further supported by the measureg
ments of the largest Lyapunov exponent which agree witfb
one another.

attractor unfolds in a three-dimensional space and resembkgj
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corresponding to the experimental values, shown in Fig. 10skewness[see Fig. 11a3)] the value is always positive,
the same behavior is observed both numerically and experiwhich means that the distribution of values is more spread
mentally. out above the mean. The skewness increases when the aver-
In the numerical simulation a much wider range of pin-age size of the domain reduces, reflecting the fact that the
hole size can be explored than is possible in the experimeniean is moving closer to the lower cutoff value of zero.
We find that as the pinhole size is increased there is a “satufhere is also a turning point in the skewness of the distribu-
ration” of the largest Lyapunov exponent for the local sys-tion of the domain sizes. This shift in the shape of the dis-
tem [starting at a pinhole diameter of 1 units of grid  tribution takes place before the turning behavior of the mean.
separatiop D,=15]. This is in agreement with other studies ~ The results of the numerical simulatiofsigs. 11b1)—
of extended chaotic systeris6], where it is found that fora 11(b3)] are in agreement with the experimental observations.
large extended system the largest Lyapunov exponent of th&Vithin the range of pinhole size corresponding to the experi-
subsystem is amtensivequantity, i.e., not dependent on the ment, (16<D,<17), the same behavior is observed. In par-
size of the system. For pinholes smaller than this saturatioticular, as the pinhole diameter increases, the average size of
point the criterion of alarge system is not fulfilled—the the domains and the standard deviation decreases while the
subsystems are still strongly coupled to each other. skewness increases. We can also observe the turning behav-
Saturation is also found in the global system, but at largefor of the mean and the skewness, the latter preceding the
pinhole size D,>25). In this case saturation occurs be-former asD, gradually increases. Whe,, is increased be-
cause, beyond a certain size of pinhole, only the highest spgond the two turning points, the skewness begins to fluctu-
tial frequencies are affected. Filtering at this point is noate. This coincides with small values of standard deviation,
longer effective as a way of changing the spatial couplingand is a reflection of the fact that when the spread of a
strength of the system—diffusion has taken over as theneasured value around its mean is small the shape of the

dominant mechanism of spatial coupling. distribution can be easily affected by fluctuations of the in-
dividual measurements.
B. Statistics of the domain size From the numerical results we can identify different types

Having di dth iati fd . ¢ diff tof relations which exist between the pinhole diameter and the
aving discusse € variation of dynamics at difterenty, o ¢ e chaotic domains. We illustrate this by plotting the

spla';l_al Iotca';lr(])ns,r;/ve nowflook at_the (:olmams thetmsel}/estk:?esults of a typical numerical study; see Fig. 12. Since this is
relation to the change of experimental parameters. in representative picture, in the future we shall refer to the

result_s of the_numerl_cal s[mula_ttlon§ the average sizé of th?ange of size of pinholes as corresponding to regions A, B,
chaotic domains varies with diffusion. Diffusion cannot be and C

varied significantly in the experiment, and consequently we Region A corresponds to the condition where chaos can-

are npt able to verify this numgrlcal res_ult. However, SINCE, 6t be sustained due to the strong spatial coupling. This re-
diffusion plays the role of spatial coupling, the strength of

Hal i b iod in th A tb tiall ion is of no special interest to us in terms of the study of
?ﬁa 1a ctcr)]upflngdct:)ank e vt?rle \'/r\]/ € expeniment by S‘iﬁ Iad spatiotemporal disorder. In region C the effect of spatial fil-
litering the Teedback pattern. We can now measure the a ering is weak compared with other coupling mechanisms
pendence of domain size with the pinhole size of the spati

filter uch as diffusion. Changing the size of the pinhole in this

At . tin i th b b fregion will have no effect on the spatiotemporal dynamics of
q a g“’%? moment In ImV?/ ere may the ? numboer ofy, o system, and so the basic feature in this region is a flat
omains with varying sizes. Vve measure the me-averageﬂwe. In region B, the average size of the chaotic domains is

mean value of the domains siz¢s), as well as the standard found to depend strongly on the diameter of the filtering

deviation and skewness of the distribution of the sizes. USin%inhole. Within this range, spatial filtering of the feedback

the digitized video images of the output beam, a threshol attern is clearly an effective way of changing the complex-

value for the intensity is set, and pixels brighter than th""fity of our system.

threshold value are considered to be part of a domain. In this There is one other feature of this “typical” picture—the

way éh(_errr:umber .Of dotmlalnz and th? alrea oTteach arr1e me.?ﬁp at the turning point. Since if too large a pinhole is used it
sured. The experimental and numerical resulls aré Shown \ly ot pe effective in spatial filtering, we expect that as the

F'gl‘ 1'3h . t th . f the d . .size of the pinhole increases the size of the domains should
n the experment, the average size ol the domains Ii}radually decrease toward a constant value dictated by the
found to reduce with the increase of pinhole size while thediffusion coefficient. However, at the boundary of regions B

tota] domaln area remains constghtg. 13(al]. Hence e and C there is a small range of pinhole size within which the
ducing spatial coupling breaks up the domains. There is

however, an exception to the rule which occurs at the poinﬁxerage domain size is smaller than that within either of the
' ) S o regions. If we consider the dominant spatial couplin
of the largest pinhole sizgFig. 11(al)]. We label that as a 9 P Pling

“turni L Th his plotted | le 1o sh mechanism in regions B and C to be spatial filtering and
urning point. € grapn IS plotted on a log scalé to show diffusion, respectively, then in this border area our results

the exponential relation between the diameter of the pinholtguggest that spatial coupling is in fact weaker when the two

and the domain size. . -
L . . _.__mechanisms are combined.
The variation of the standard deviation of domain size

with pinhole size follows the general trend of the average
domain sizdsee Fig. 12a2)]. When the average size of the
domains is small, the difference between the sizes of indi- In Sec. IVB the average domain size was shown to
vidual domains is also found to be small. In the case ofthange with the size of the pinhole. Within this filtering ef-

C. Scaling of chaotic domain size with spatial coupling
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FIG. 11. Statisticd¥mean, standard deviation and skewnesfsthe time-averaged size of chaotic domains vs the log of the pinhole
diameter,D,. Plots on the left hand sid€al)—(a3)] are experimental results. Numerical results are on the right hand(bitye-(b3)]. In
the experimental graph®), is in units of um, while for the numerical curveB, is in units of the grid separation, normalized to the
diffusion length. Note the variation of the total area of the bright domains, 10¥spfs shown as triangles on the same plots as{§r
[panels(al) and(b1)].

fective region(region B a power scaling behavior between
(s) andDj, emerges. In this subsection we examine region B,
and try to understand the underlying mechanism for this scal- o o ° B C
ing behavior. 100 °
Diffusion and spatial filtering are the two mechanisms in
our system which affect the coupling between neighboring
spatial points. They are associated with their corresponding
length scales, namely, diffusion lendth; and spatial filter-
ing length Ler.  Lgir can be measured directly from the
experiment, and is proportional to the diffusion coefficibnt
in the model equatiofil). Ly, iS inversely proportional to o©
the diameter of the pinhol® , . o
In our experiment diffusion cannot be varied effectively. ] * '
Therefore, the effect of changing diffusion is studied numeri-
cally. We find that both diffusion and spatial filtering affect
the average size of the chaotic domains. This can be seen in FIG. 12. Variation of the average domain size with pinhole di-
Fig. 13, where we plot the average domain size versus pirameter(numerical resujt Three regions marke#, B, andC, show-
hole diameter for diffusion coefficieni3=0.1 and 0.01. The ing different types of relationships, can be identifi€Biffusion
position of the turning point ofs) and the length and posi- was set aD=0.8.)

20 -

In(<s>) (no. of pixels)

In(D,) (grid point)
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FIG. 13. Scaling of the average domain size with pinhole diam-
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FIG. 15. Scaling of the average domain size with pinhole diam-

eter (numerical. Two curves correspond to two different values of eter(experimental
diffusion: D=0.10 for the squares arid=0.01 for the diamonds.
served in the numerical results. The slope of the line is mea-

tion of the filtering effective regiorfregion B are both af-  sured to bg8=0.95+0.1. From the experimental result we
fected by diffusion. The value to whigfs) converges when may conclude that the average size of the chaotic domains
D, is large also changes with diffusion, as shown in Fig. 14scales linearly with the diffusion length as well as with the

These observations lead to the conclusion that the averagength scale associated with spatial filtering. This seems to
size of the domains is a function of the two length scaleshe supported by the numerical plot of {g) versusD y;
i.e.,(s)="f(Lgi,Lfirer). From dimensional considerations we when filtering is less effectivéFig. 14). Here the slope is
expect this function to consist of terms of the form also close to 1[(2—8)=1.08+0.1]. Combining numerical
L3 LA, becausds) has a dimension of length squared. and experimental results, we can write
Therefore, to the first approximation we can write

®)

(s)= aLSi;BLﬁtera 4) (s)=aL girL iter -
o . This states that the chaotic domains are of a geometrical
wherea contains information about the geometry of the do-ghape with two scaling lengths. The simplest example of this
mains, and3 measures the relative importance of the lengthyould be a rectangle or an ellipse. More complex geometri-
scales. cal structures may have more length scales, and the log scale
If this approximation is valid then the power scaling of power relation plot may not always have a slog® (hich
(s) with Lger andL g will be reflected as straight lines in the g gn integer.
log scale plots ofs) versus the two length scales. The nu-  The numerical picture is in fact more complicated than it
merical results in Figs. 13 and 14 show that there are regiongt first appears. As the pinhole size changes, the slope of
of the curves in which linear relations between(#X and  |n((s)) versus diffusion also changes. This variation is shown
Drirer and between I4§)) and Lg¢ exist. The experimental i Fig. 16. In region B, where filtering is effectivg, fluctu-

plot of In((s)) versusD,, (Fig. 15 clearly shows that the data ates and does not have an integer value. This reflects the
points fall mainly within region B. A straight line can be

fitted through all the data points except for the points when [ T R
pinhole size is 800um, exhibiting the turning behavior ob- i ¢
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FIG. 16. Variation of the slope of {s) vs diffusion (of which

FIG. 14. Average domain size vs diffusignumerical. Fig. 14 is an examp)ewith D (numerica).
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complex nature of the chaotic domains in this region. As thenents of the average size of the chaotic domains, we
pinhole size increases, in region C, the slope converges touncovered a scaling relation between the average size of the
value close to 1.0. chaotic domains and spatial coupling strength. In particular,
These intriguing differences between the numerical andhese chaotic domains are found to be affected by two length
experimental results are subjects open to further investigascales: one relating to the spatial filtering of the feedback and
tion. Although introducing spatial filtering in the experiment the other to diffusion.
has the desired effect of changing the strength of the spatial Characterization of spatiotemporal disorder in regimes of
coupling, far more complex changes take place. The lack ofleveloped turbulence in optical systems is still an open field
homogeneity in the experiment, the diffraction introduced byof research. We have shown, however, that standard statisti-
the pinholes, and fluctuations in the modulation of the inputcal techniques can be successfully applied to regimes of
beam(in time as well as in spagare all effects which are weak optical turbulence when the mechanism underlying the
not accounted for in our model. Nonetheless, the model ispatiotemporal disorder is clearly defined. In our case the
effective in recovering the power relation betwe@) and  bulk chaotic oscillations induced by the temporal modulation
the filtering length. of the input beam couple with the spatial coupling due to
diffusion. When these two mechanisms have comparable
V. CONCLUSION strengths, well-defined out of phase chaotic domains occur
) _ ) ) introducing loss of spatiotemporal correlations. Possible gen-
In this paper we have investigated the spatiotemporal dygralizations include the effect of diffracticiere neglected
namics of a LCLV system with two-dimensional feedbackpt often impossible to eliminate completely in optical ex-
and a modulated input beam. Spatiotemporally chaotic dyperiments and the utilization of faster optical nonlinearities.
namics is found for a wide region of input modulation. This \we |eave these research subjects to future communications.
regime is characterized by the formation of bright chaotic
domains. By evaluating Lyapunov exponents and power
spectra, we found—both in experiments and in numerical ACKNOWLEDGMENTS
simulations—that the local chaotic dynamics remains low
dimensional while the global dynamics is dominated by the E.Y. and F.P acknowledge financial support from EPSRC
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