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Statistics and scaling behavior of chaotic domains in a liquid crystal light valve
with rotated feedback
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An optical system containing a liquid crystal light valve and a two-dimensional feedback is known to form
a wide variety of ordered and disordered spatial structures@Akhmanovet al., J. Opt. Soc. Am. B9, 78 ~1992!#.
Here we describe a spatiotemporal feature—chaotic domains, obtained under temporal modulation of the input
beam. We characterize these structures using a geometrical and a statistical approach. We find that the system
retains low-dimensional dynamics locally while exhibiting spatiotemporal chaos. A power scaling relation
between the size of the chaotic domains and the spatial coupling length of the system is also obtained from the
experimental measurements. Good overall agreement is found between experimental results and the numerical
integration of model equations.@S1063-651X~99!12803-4#

PACS number~s!: 42.65.Sf, 42.79.Kr, 47.54.1r, 05.45.2a
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I. INTRODUCTION

Since the pioneering experimental and theoretical wo
by Akhmanovet al. in the late 1980s@1–4# which are re-
viewed in Ref. @5#, the liquid crystal light valve~LCLV !
optical system with two-dimensional feedback loop has
tablished itself as a prototype experiment in the field of p
tern formation and instabilities in nonlinear optics@6–8#. It is
a simple optical system with a high degree of flexibility a
controllability, and is capable of generating a wide range
spatial and spatiotemporal distributions of light intensity.

In this paper we investigate the spatiotemporal dynam
of an optical system containing a LCLV with 180 ° rotate
feedback and modulated input. Minimizing the effect of d
fraction in the experiment by imaging the ‘‘read’’ side of th
LCLV onto its ‘‘write’’ side, we consider diffusion and the
rotation of the feedback as the main mechanisms for
spatial coupling. The rotation of the feedback by 180 ° a
the modulation of the input field induce chaotic dynami
Because of diffusion and the transverse boundaries~and ex-
perimental inhomogeneities!, chaotic domains of in-phas
dynamics are formed in different locations of the transve
space.

Without the modulation, the system is stationary for t
given parameter settings. As the input beam intensity is
creased, other complex spatiotemporal dynamics can
found even without the temporal modulation of the inp
However, to the best of our knowledge the formation
bright chaotic domains is a particular feature not previou
described within the rich phenomenology of this system.

We characterize the behavior of the system with a var
of techniques. Using Lyapunov exponents we show that
local dynamics in the domain is chaotic, and that the dyna
ics of the intensity of the entire pattern has a posit
Lyapunov exponent which is lower than the exponents of
domains. Using statistical and geometrical techniques

*Electronic address: eric@reynolds.ph.man.ac.uk
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also determine scaling laws in the time-averaged aver
size of the bright domains.

The paper is organized as follows: The experimental se
is presented in Sec. II. The model equation obtained by
scribing the propagation through all the optical elements
the experiment is discussed in Sec. III, together with
conditions to obtain temporal chaos. We also present num
cal simulations of the full spatiotemporal chaos regime le
ing to the formation of the chaotic domains. Section IV pr
sents the analysis of the experimentally observ
spatiotemporal chaos, and presents evidence of a power
ing relation between the size of the chaotic domains and
spatial coupling length of the system. Conclusions and
knowledgements are contained in Sec. V.

II. EXPERIMENTAL SETUP

The setup for the experiment is shown in Fig. 1. T
feedback fiber bundle is rotated by 180 °, so that the fe
back loop closes upon itself after two round trips of the s
tem. The input light intensity is modulated by a Michaels
interferometer arrangement~boxed in the diagram of Fig. 1!
with the mirror (Mmoving) mounted on a piezoelectric crysta
An ac sinusoidal voltage is applied across the piezoelec
crystal to control the movement of the mirror. Since t
movement is only a fraction of a wavelength, there is no lo
of temporal coherence. This also ensures that the intensit
the output changes linearly with the displacement of
moving mirror. The input light intensity is continuousl
monitored, and a sample of the output signal of the monit
ing photodetector is shown in Fig. 1. To influence t
strength of transverse spatial coupling in the system, p
holes of varying sizes are used at positionP2 to spatially
filter the feedback beam. Photodiode detectors are use
monitor the temporal evolution of both the dynamics of
local spot in the transverse plane and the intensity of
entire output beam. The overall spatiotemporal behavior
the system is instead observed by means of a conventi
video recorder. The images are then digitized and analy
using a computer.
2918 ©1999 The American Physical Society
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III. SPATIOTEMPORAL CHAOS AND CHAOTIC
DOMAINS IN THE MODEL EQUATION

Equations treating the LCLV as a nonlinear element
side an optical cavity have been derived in the past@9#. They
successfully model and predict the behavior of an opt
system similar to ours. There are, however, important fac
that need to be taken into consideration. In our experim
the field transmitted by the fiber bundle is completely a
sorbed by the photoconductor layer. Moreover, the liq
crystal refractive index, which modulates the input lig
beam, is affected by the charge carrier density of the ph
conductor and not by the field directly. Therefore, we ha
rederived the model equation by considering our experim
tal setup as a system with optical feedback. Although
final form of our model equation is similar to earlier mode
our approach enables us to write the feedback coefficient
the strength of the nonlinearity in terms of experimenta
measurable angles between the liquid crystal director,
polarizer orientation, and the direction of polarization of t
input beam.

The model equation for our optical two-dimensional fee
back system containing a LCLV is as follows:

t
]f~rW,t !

]t
1f~rW,t !5D2¹2f~rW,t !1k@12« cos~ f t !#

3@11g cos„f~rW8,t !1f0…#, ~1!

where

FIG. 1. Setup of the LCLV experiment.
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k5mBI in /2@cos2~c11c2!1cos2~c12c2!#,

g5@cos2~c12c2!2cos2~c11c2!#/@cos2~c11c2!

1cos2~c12c2!#.

k and g are the strength of nonlinearity and the feedba
coefficient respectively.f is the phase shift of the read bea
introduced by the LCLV,t is the relaxation time constant,D

is the effective diffusion coefficient,rW8 is rW after coordinate
transform through the feedback loop, andf0 is the constant
phase shift.m is the nonlinear coefficient of the LCLV,B is
the total loss of the system, andI in is the input light intensity.
c1 andc2 are the angles between the liquid crystal direc
and the polarizer orientation and between the liquid crys
director and the direction of polarization of the input bea
respectively.

Notice that a modulation term has been included in t
equation.f and« are the frequency and depth of the mod
lation applied to the input beam, respectively.I in appears in
the expression fork. Thus if I in is of finite sizek will take
on the same spatial profile as the pump beam. In our num
cal simulations we use a pump beam with a top-hat sh
with homogeneous intensity on the flat top. To model t
feedback filtering pinhole numerically, the Fourier transfo
of the field is multiplied by a top-hat function. This i
equivalent to a convolution in real space@10#. In the experi-
ment diffraction is minimized by imaging the read side of t
LCLV onto its write side; hence its effect is neglected in t
model.

Without diffusion, Eq.~1! can be reduced to a set of tw
coupled nonlinear differential equations@1#:

t
df1

dt
1f15@12« cos~ f t !#k@11g cos~f21f0!#,

~2!

t
df2

dt
1f25@12« cos~ f t !#k@11g cos~f11f0!#,

wheref1 andf2 are the phase shifts at pairs of pointsx and
x8, connected through the 180 ° rotation of the feedba
loop @11#. Equations~2! govern the temporal behavior o
each half of the transverse field. The temporal behavior
this system, in the absence of modulation of the input lig
(«50), is depicted by the phase diagram shown in Fig.
The symmetry of the diagram corresponds to the symm
of the set of equations.

The location, number, and stability of the fixed points
Fig. 2 depend on the system parameters. One generic fea
however, is that the relaxations to the stable off-diago
fixed points (f̄1 ,f̄2) present damped oscillations, in agre
ment with the scaled eigenvalues of the linear stability

L5t@216kgAsin~f̄11f0!sin~f̄21f0!#. ~3!

In particular, for the parameter values of Fig. 2, the rela
ation oscillations have scaled frequencies
3.44/(2pt), 5.42/(2pt), and 5.05/(2pt) for the stable
fixed pointsE, F, andG, respectively. As the modulation o
the input beam is introduced («.0) at a frequency close to
that of the damped oscillation, and its depth increased
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complex chaotic attractor is formed in the region of pha
space around the stable fixed pointsE, F, andG. Therefore,
with suitable modulation of the input light intensity, chaot
dynamics can be induced in the bulk of the system.

Having found chaotic dynamics in the coupled o.d.e
@Eq. ~2!#, we extend our investigation to take spatial effe
into account. By numerically integrating the original p.d
model equation@Eq. ~1!# and monitoring pairs of transvers
locations connected by the 180° rotation of the feedb
loop, we can compare the dynamical behavior of the p.
and the coupled o.d.e. systems~Fig. 3!. In both cases we find
that the strange attractors occupy the same region of s
and have similar shape. The two distinct parts of the attra

FIG. 2. Phase space diagram of the system:k57.0, g50.82,
f050.338, and«50.0. PointsA, B, C, and D are saddle points
along the diagonal. Away from the diagonal, there are symme
pairs of stable fixed points corresponding to positionsE, F, andG,
while point H and its symmetric counterpart are saddle points.

FIG. 3. Comparison of temporal dynamical behavior with a
without diffusion. For the diffusive case,D50.03. Frequency is
normalized to the relaxation time of the LCLV.
e
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are clearly identifiable in each of the two cases. The pow
spectra also show similar distributions of power in the f
quency domain. There are, however, some differences
tween the two cases which become more pronounced aD
increases. One of these differences is that the trajecto
going around the higher suborbit are less spread out w
diffusion is included. Another difference, less obvious fro
the diagram, is that when diffusion is present the orbit spe
more time in the lower of the two suborbits. WhenD is
sufficiently large, the dynamics will no longer be chaotic d
to strong coupling to the boundaries of the beam where th
is no oscillation at all. We avoid this ‘‘large’’ diffusion limit
in our experiment.

The largest positive Lyapunov exponents, calculated fr
time series of each of the two cases, are

lmax50.2160.02 ~without diffusion!,

lmax50.2260.02 ~with diffusion!.

These values are in good agreement with each other, and
with the value of the largest Lyapunov exponent of the s
tem, calculated from the o.d.e’s, of 0.2260.01. For the pur-
pose of these calculations the relaxation time of the LCLV
taken as unity.

Therefore, in the presence of diffusion, chaos induced
the bulk of the system is preserved. We note that the num
cal results for the temporal characteristics of the diffus
case are independent of the transverse position so long
is away from the boundaries of the pattern segment.

In the transverse plane of the system the beam is s
rated into two halves of unequal brightness, and within e
of these halves there are bright spots. Figure 4 shows a
quence of snapshots@12# of the transverse beam profil
showing the evolution of the complex spatiotemporal str
tures. Bright areas are shown to emerge from the darker
rounding background area, evolve in shape and size,
then, collapsing onto themselves, disappear. New bright
eas will then emerge elsewhere, and the sequence contin
We call the bright areas bright domains and the darker a
dark domains. These two types of domains occupy a co
mon area away from the boundaries. We call this area
‘‘active region.’’ Because bright domains are distinctiv
while dark domains are difficult to separate from the inact
areas, unless otherwise stated ‘‘chaotic domains’’ shall
used to refer to the bright domains. Rotational symmetry

ic

FIG. 4. Sequence of frames of the transverse profile of the
fusive system—numerical simulation.k57.5, g50.82, f0

52.338, «50.5, andf 50.526/t, and the frame interval is 0.05t.
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PRE 59 2921STATISTICS AND SCALING BEHAVIOR OF CHAOTIC . . .
the system is always preserved as these domains alw
evolve in pairs, one on either half of the beam. This is
case with all other spatial features. The average size
number of the bright domains is affected by the amount
diffusion in the system. The greater the diffusion the larg
the size, and the smaller the number, of the domains. Th
fore, the whole system behaves as a spatially extended a
of interconnected subsystems evolving around the cha
attractor where the subsystem size is affected by the am
of diffusion.

IV. EXPERIMENTAL OBSERVATION OF CHAOTIC
DOMAINS AND STATISTICAL ANALYSIS

Based on the experimental observations, the diffus
model discussed in Sec. III appears to correctly predict
spatiotemporal behavior of our feedback system. When
experimental control parameters are set at the approp
values suggested by the numerical simulation results, br
domains are observed@13#. Note that the response time o
the LCLV ranges from some tens to hundreds of millise
onds depending on the controlling electronic signal. The
fore chaos is induced by using frequencies from 2 to 50
for the modulation of the input light beam, in agreement w
the relaxation oscillations observed with no modulatio
Chaotic-type spatiotemporal dynamics and the formation
chaotic domains can also be observed, in the experimen
well as numerics, with higher~from 2–4 times! modulation
frequencies although these dynamical regimes will not
dealt with in this paper. Figure 5 shows a sequence of sn
shots of the enlarged ‘‘active region’’ of the beam. Each
these domains emerges from the darker surrounding b
ground, oscillates, and changes its size, then contracts
dissolves away by collapsing into the center. This behavio
similar to the results of the numerical study. In the tempo
domain, a chaotic-type behavior is observed, similar to t
of the numerical simulations. The power spectrum of
time series is presented in Fig. 6. A broadband character
with substantial power in the low frequency components
be observed.

There are, however, some noticeable differences betw
the experimental observation and the numerical results
the experiment, the bands of inactive region occupy a m
broader area, so much so that the active region is confine

FIG. 5. Sequence of frames of the transverse intensity profil
the LCLV optical system—experiment~25 frames per second!.
Panel~a! shows the whole cross section of the beam while sub
quent panels are enlarged portions showing the ‘‘active’’ regi
The modulation frequency used here is 5 Hz.
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a relatively small area at the center of each half of the be
@see panel~a! of Fig. 5#. The shapes of the domains als
appear to be more regular in the experiment as compare
the numerical results. As a consequence, although the s
of the domains evolve in time, their shape does not appea
change significantly during their ‘‘lifetime.’’ There also
seem to be preferential sites where chaotic domains
formed in the experiment, whereas in the numerical simu
tion domains are formed at random locations. This is pr
ably due to spatial inhomogeneities in the experiment wh
are not included in the model equations.

In the temporal domain, the method of delay coordin
embedding@14# was applied to the experimentally obtaine
time series of intensity measurement from a small area
tector placed within the active region of the beam. W
choose an embedding dimension of three since, from
numerical studies, we expect a three-dimensional space t
sufficient to unfold the attractor of interest to us. We also u
the technique of singular value decomposition reduction@15#
to reduce the effects of noise, as we expect the dynamic
the system to be low dimensional. Plotting the time-de
coordinates on this reconstructed phase space, we obtai
unfolded attractor shown in Fig. 7. Using the same te
nique, the numerically obtained time series of the diffus
case is also embedded. In the numerical case the time s
is taken from monitoringf within the active region. The dc
part of each time series is removed since we are only in
ested in the dynamics.

Since the two orbits are reconstructed from time series

of

e-
.

FIG. 6. Power spectrum of the experimental time series.

FIG. 7. Phase space portraits reconstructed using a delay
bedding of time series data from the experiment~left hand panel!
and numerical simulation of Eq.~1! ~right hand panel!.
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quantities which are closely related but not the same, t
are not expected to be identical. However, in both cases
attractor unfolds in a three-dimensional space and resem
a coiled up spring, roughly separated into two interconnec
parts. Although the experimental trajectories are not smo
reflecting the limited sampling rate, and the flow of the t
jectories is less well defined, reflecting the effect of resid
noise, the two attractors are topologically similar objects
is thus reasonable to conclude that the two reconstructe
tractors originate from similar, if not the same, underlyi
dynamical systems. This is further supported by the meas
ments of the largest Lyapunov exponent which agree w
one another.

A. Temporal characterization of the chaotic domains

In order to gain further knowledge of the relationship b
tween the subsystems within the transverse cross section
compare the dynamical behavior of the global system w
that of the local system, and examine the differences betw
different types of local areas. Bylocal we refer to a location
within the active region of the transverse cross section of
system with an area much smaller than the typical size of
geometrical structures present.Global, on the other hand
means the total area of the transverse cross section. We
acterize the differences in local and global behaviors
means of the power spectrum and the principal~largest!
Lyapunov exponent.

The experimental results for these are given in Figs. 8
9. Figure 8 compares the power spectra of the experime
time series representing the two cases. A feedback filte
pinhole of 300-mm diameter is used. The power spectru
for the local behavior is broadband, with substantial powe
the lower frequency region, clearly indicating that the beh
ior is chaotic. The power spectrum for the global behav
however, indicates a mainly periodic oscillation with a nu
ber of isolated peaks. Only a small amount of power is d

FIG. 8. Comparison of local and global power spectra~experi-
mental result!. The size of the pinhole used in filtering is 0.3 mm
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tributed among other frequencies. Although the global
havior is clearly dominated by the modulation of the inp
beam~the dominant frequency in the power spectrum cor
sponding to the driving frequency of the input beam!, the
largest Lyapunov exponents are small but still positive, in
cating chaotic oscillation.

For the calculation of the largest Lyapunov exponent,
measurements are repeated with different sizes of pinhole
the varying strength of the spatial coupling of the system
is found that the dynamics at the local level is consisten
more chaotic than its global counterpart throughout the ra
of pinhole size~Fig. 9!.

The largest Lyapunov exponents of the local variable
found to increase as the diameter of the feedback pinho
increased, suggesting that with weakening spatial coup
the subsystems become less synchronized with one ano
As a result they can oscillate more independently of e
other, becoming more chaotic in the process. This rela
between the chaoticity and the spatial coupling is also fou
for the global dynamics.

These observations are supported by the numerical
sults. The variation of the principal Lyapunov exponent w
pinhole size ~inversely proportional to spatial couplin
strength! is shown in Fig. 10. In the pinhole diameter ran

FIG. 9. Largest Lyapunov exponents of local~diamonds! and
global ~triangles! intensity ~experimental result!.

FIG. 10. Largest Lyapunov exponents of the local~diamonds!
and global~triangles! systems~numerical simulation!.
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corresponding to the experimental values, shown in Fig.
the same behavior is observed both numerically and exp
mentally.

In the numerical simulation a much wider range of p
hole size can be explored than is possible in the experim
We find that as the pinhole size is increased there is a ‘‘s
ration’’ of the largest Lyapunov exponent for the local sy
tem @starting at a pinhole diameter of 15~in units of grid
separation!, Dp515#. This is in agreement with other studie
of extended chaotic systems@16#, where it is found that for a
large extended system the largest Lyapunov exponent of
subsystem is anintensivequantity, i.e., not dependent on th
size of the system. For pinholes smaller than this satura
point the criterion of alarge system is not fulfilled—the
subsystems are still strongly coupled to each other.

Saturation is also found in the global system, but at lar
pinhole size (Dp.25). In this case saturation occurs b
cause, beyond a certain size of pinhole, only the highest
tial frequencies are affected. Filtering at this point is
longer effective as a way of changing the spatial coupl
strength of the system—diffusion has taken over as
dominant mechanism of spatial coupling.

B. Statistics of the domain size

Having discussed the variation of dynamics at differe
spatial locations, we now look at the domains themselve
relation to the change of experimental parameters. In
results of the numerical simulations the average size of
chaotic domains varies with diffusion. Diffusion cannot
varied significantly in the experiment, and consequently
are not able to verify this numerical result. However, sin
diffusion plays the role of spatial coupling, the strength
spatial coupling can be varied in the experiment by spati
filtering the feedback pattern. We can now measure the
pendence of domain size with the pinhole size of the spa
filter.

At a given moment in time there may be a number
domains with varying sizes. We measure the time-avera
mean value of the domains sizes,^s&, as well as the standar
deviation and skewness of the distribution of the sizes. Us
the digitized video images of the output beam, a thresh
value for the intensity is set, and pixels brighter than t
threshold value are considered to be part of a domain. In
way the number of domains and the area of each are m
sured. The experimental and numerical results are show
Fig. 11.

In the experiment, the average size of the domains
found to reduce with the increase of pinhole size while
total domain area remains constant@Fig. 11~a1!#. Hence re-
ducing spatial coupling breaks up the domains. There
however, an exception to the rule which occurs at the po
of the largest pinhole size@Fig. 11~a1!#. We label that as a
‘‘turning point.’’ The graph is plotted on a log scale to sho
the exponential relation between the diameter of the pinh
and the domain size.

The variation of the standard deviation of domain s
with pinhole size follows the general trend of the avera
domain size@see Fig. 12~a2!#. When the average size of th
domains is small, the difference between the sizes of in
vidual domains is also found to be small. In the case
0,
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skewness@see Fig. 11~a3!# the value is always positive
which means that the distribution of values is more spre
out above the mean. The skewness increases when the
age size of the domain reduces, reflecting the fact that
mean is moving closer to the lower cutoff value of zer
There is also a turning point in the skewness of the distri
tion of the domain sizes. This shift in the shape of the d
tribution takes place before the turning behavior of the me

The results of the numerical simulations@Figs. 11~b1!–
11~b3!# are in agreement with the experimental observatio
Within the range of pinhole size corresponding to the exp
ment, (10,Dp,17), the same behavior is observed. In p
ticular, as the pinhole diameter increases, the average siz
the domains and the standard deviation decreases while
skewness increases. We can also observe the turning be
ior of the mean and the skewness, the latter preceding
former asDp gradually increases. WhenDp is increased be-
yond the two turning points, the skewness begins to fluc
ate. This coincides with small values of standard deviati
and is a reflection of the fact that when the spread o
measured value around its mean is small the shape of
distribution can be easily affected by fluctuations of the
dividual measurements.

From the numerical results we can identify different typ
of relations which exist between the pinhole diameter and
size of the chaotic domains. We illustrate this by plotting t
results of a typical numerical study; see Fig. 12. Since thi
a representative picture, in the future we shall refer to
range of size of pinholes as corresponding to regions A,
and C.

Region A corresponds to the condition where chaos c
not be sustained due to the strong spatial coupling. This
gion is of no special interest to us in terms of the study
spatiotemporal disorder. In region C the effect of spatial
tering is weak compared with other coupling mechanis
such as diffusion. Changing the size of the pinhole in t
region will have no effect on the spatiotemporal dynamics
the system, and so the basic feature in this region is a
line. In region B, the average size of the chaotic domain
found to depend strongly on the diameter of the filteri
pinhole. Within this range, spatial filtering of the feedba
pattern is clearly an effective way of changing the comple
ity of our system.

There is one other feature of this ‘‘typical’’ picture—th
dip at the turning point. Since if too large a pinhole is used
will not be effective in spatial filtering, we expect that as t
size of the pinhole increases the size of the domains sh
gradually decrease toward a constant value dictated by
diffusion coefficient. However, at the boundary of regions
and C there is a small range of pinhole size within which
average domain size is smaller than that within either of
two regions. If we consider the dominant spatial coupli
mechanism in regions B and C to be spatial filtering a
diffusion, respectively, then in this border area our resu
suggest that spatial coupling is in fact weaker when the
mechanisms are combined.

C. Scaling of chaotic domain size with spatial coupling

In Sec. IV B the average domain size was shown
change with the size of the pinhole. Within this filtering e
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FIG. 11. Statistics~mean, standard deviation and skewness! of the time-averaged size of chaotic domains vs the log of the pinh
diameter,Dp . Plots on the left hand side@~a1!–~a3!# are experimental results. Numerical results are on the right hand side@~b1!–~b3!#. In
the experimental graphs,Dp is in units of mm, while for the numerical curvesDp is in units of the grid separation, normalized to th
diffusion length. Note the variation of the total area of the bright domains, 10% of(s, is shown as triangles on the same plots as for^s&
@panels~a1! and ~b1!#.
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di-
fective region~region B! a power scaling behavior betwee
^s& andDp emerges. In this subsection we examine region
and try to understand the underlying mechanism for this s
ing behavior.

Diffusion and spatial filtering are the two mechanisms
our system which affect the coupling between neighbor
spatial points. They are associated with their correspond
length scales, namely, diffusion lengthLdif and spatial filter-
ing length Lfilter . Ldif can be measured directly from th
experiment, and is proportional to the diffusion coefficientD
in the model equation~1!. Lfilter is inversely proportional to
the diameter of the pinhole,Dp .

In our experiment diffusion cannot be varied effective
Therefore, the effect of changing diffusion is studied nume
cally. We find that both diffusion and spatial filtering affe
the average size of the chaotic domains. This can be see
Fig. 13, where we plot the average domain size versus
hole diameter for diffusion coefficientsD50.1 and 0.01. The
position of the turning point of̂s& and the length and posi
,
l-

g
g

.
i-

in
n-

FIG. 12. Variation of the average domain size with pinhole
ameter~numerical result!. Three regions markedA, B, andC, show-
ing different types of relationships, can be identified.~Diffusion
was set atD50.8.)
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tion of the filtering effective region~region B! are both af-
fected by diffusion. The value to whicĥs& converges when
Dp is large also changes with diffusion, as shown in Fig.

These observations lead to the conclusion that the ave
size of the domains is a function of the two length scal
i.e., ^s&5 f (Ldif ,Lfilter). From dimensional considerations w
expect this function to consist of terms of the for
Ldif

22bLfilter
b , becausês& has a dimension of length square

Therefore, to the first approximation we can write

^s&5aLdif
22bLfilter

b , ~4!

wherea contains information about the geometry of the d
mains, andb measures the relative importance of the len
scales.

If this approximation is valid then the power scaling
^s& with Lfilter andLdif will be reflected as straight lines in th
log scale plots of̂ s& versus the two length scales. The n
merical results in Figs. 13 and 14 show that there are reg
of the curves in which linear relations between ln(^s&) and
Dfilter and between ln(^s&) and Ldif exist. The experimenta
plot of ln(̂ s&) versusDp ~Fig. 15! clearly shows that the dat
points fall mainly within region B. A straight line can b
fitted through all the data points except for the points wh
pinhole size is 800mm, exhibiting the turning behavior ob

FIG. 13. Scaling of the average domain size with pinhole dia
eter ~numerical!. Two curves correspond to two different values
diffusion: D50.10 for the squares andD50.01 for the diamonds.

FIG. 14. Average domain size vs diffusion~numerical!.
.
ge
,

-
h

ns

n

served in the numerical results. The slope of the line is m
sured to beb50.9560.1. From the experimental result w
may conclude that the average size of the chaotic dom
scales linearly with the diffusion length as well as with t
length scale associated with spatial filtering. This seems
be supported by the numerical plot of ln(^s&) versusDdif
when filtering is less effective~Fig. 14!. Here the slope is
also close to 1@(22b)51.0860.1#. Combining numerical
and experimental results, we can write

^s&.aLdifLfilter . ~5!

This states that the chaotic domains are of a geometr
shape with two scaling lengths. The simplest example of
would be a rectangle or an ellipse. More complex geome
cal structures may have more length scales, and the log s
power relation plot may not always have a slope (b) which
is an integer.

The numerical picture is in fact more complicated than
at first appears. As the pinhole size changes, the slop
ln(^s&) versus diffusion also changes. This variation is sho
in Fig. 16. In region B, where filtering is effective,b fluctu-
ates and does not have an integer value. This reflects

- FIG. 15. Scaling of the average domain size with pinhole dia
eter ~experimental!.

FIG. 16. Variation of the slope of ln^s& vs diffusion ~of which
Fig. 14 is an example! with DP ~numerical!.
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complex nature of the chaotic domains in this region. As
pinhole size increases, in region C, the slope converges
value close to 1.0.

These intriguing differences between the numerical a
experimental results are subjects open to further invest
tion. Although introducing spatial filtering in the experime
has the desired effect of changing the strength of the sp
coupling, far more complex changes take place. The lac
homogeneity in the experiment, the diffraction introduced
the pinholes, and fluctuations in the modulation of the in
beam~in time as well as in space! are all effects which are
not accounted for in our model. Nonetheless, the mode
effective in recovering the power relation between^s& and
the filtering length.

V. CONCLUSION

In this paper we have investigated the spatiotemporal
namics of a LCLV system with two-dimensional feedba
and a modulated input beam. Spatiotemporally chaotic
namics is found for a wide region of input modulation. Th
regime is characterized by the formation of bright chao
domains. By evaluating Lyapunov exponents and pow
spectra, we found—both in experiments and in numer
simulations—that the local chaotic dynamics remains l
dimensional while the global dynamics is dominated by
periodic modulation of the input light. The degree of com
plexity of the system is found to be a function of the tran
verse spatial coupling strength. From the statistical meas
P
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ments of the average size of the chaotic domains,
uncovered a scaling relation between the average size o
chaotic domains and spatial coupling strength. In particu
these chaotic domains are found to be affected by two len
scales: one relating to the spatial filtering of the feedback
the other to diffusion.

Characterization of spatiotemporal disorder in regimes
developed turbulence in optical systems is still an open fi
of research. We have shown, however, that standard sta
cal techniques can be successfully applied to regimes
weak optical turbulence when the mechanism underlying
spatiotemporal disorder is clearly defined. In our case
bulk chaotic oscillations induced by the temporal modulat
of the input beam couple with the spatial coupling due
diffusion. When these two mechanisms have compara
strengths, well-defined out of phase chaotic domains oc
introducing loss of spatiotemporal correlations. Possible g
eralizations include the effect of diffraction~here neglected
but often impossible to eliminate completely in optical e
periments! and the utilization of faster optical nonlinearitie
We leave these research subjects to future communicati
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